Regulation of ammonia production by mouse proximal tubules perfused in vitro. Effect of luminal perfusion.
نویسندگان
چکیده
To investigate factors regulating ammonia (NH3) production by isolated defined proximal tubule segments, we examined the rates of total NH3 (NH3 + NH+4) production by individual proximal tubule segments perfused in vitro under a variety of perfusion conditions. Segments consisting of late convoluted and early straight portions of superficial proximal tubules were incubated at 37 degrees C in Krebs-Ringer bicarbonate (KRB) buffer containing 0.5 mM L-glutamine and 1.0 mM sodium acetate, pH 7.4. The rate of total ammonia production was calculated from the rate of accumulation of total NH3 in the bath. The total ammonia production rate by unperfused proximal segments was 6.0 +/- 0.2 (+/- SE) pmol/mm per minute, which was significantly lower than segments perfused at a flow rate of 22.7 +/- 3.4 nl/min with KRB buffer (21.5 +/- 1.4 pmol/mm per minute; P less than 0.001) or with KRB buffer containing 0.5 mM L-glutamine (31.9 +/- 2.5; P less than 0.001). The rate of NH3 production was higher in segments perfused with glutamine than in segments perfused without glutamine (P less than 0.01). The perfusion-associated stimulation of NH3 production was characterized further. Analysis of collected luminal fluid samples revealed that the luminal fluid total NH3 leaving the distal end of the perfused proximal segment accounted for 91% of the increment in NH3 production observed with perfusion. Increasing the perfusion flow rate from 3.7 +/- 0.1 to 22.7 +/- 3.4 nl/min by raising the perfusion pressure resulted in an increased rate of total NH3 production in the presence or absence of perfusate glutamine (mean rise in rate of total NH3 production was 14.9 +/- 3.7 pmol/mm per minute in segments perfused with glutamine and 7.8 +/- 0.9 in those perfused without glutamine). In addition, increasing the perfusion flow rate at a constant perfusion pressure increased the rate of luminal output of NH3. Total NH3 production was not affected by reducing perfusate sodium concentration to 25 mM and adding 1.0 mM amiloride to the perfusate, a condition that was shown to inhibit proximal tubule fluid reabsorption. These observations demonstrate that the rate of total NH3 production by the mouse proximal tubule is accelerated by perfusion of the lumen of the segment, by the presence of glutamine in the perfusate, and by increased perfusion flow rates. The increased rate of NH3 production with perfusion seems not to depend upon normal rates of sodium reabsorption. The mechanism underlying the stimulation of NH3 production by luminal flow is unknown and requires further study.
منابع مشابه
Luminal secretion of ammonia in the mouse proximal tubule perfused in vitro.
A major portion of the total ammonia (tNH3 = NH3 + NH+4) produced by the isolated perfused mouse proximal tubule is secreted into the luminal fluid. To assess the role of Na+-H+ exchange in net tNH3 secretion, rates of net tNH3 secretion and tNH3 production were measured in proximal tubule segments perfused with control pH 7.4 Krebs-Ringer bicarbonate (KRB) buffer or with modified KRB buffers c...
متن کاملAmmonia production and secretion by S3 proximal tubule segments from acidotic mice: role of ANG II.
ANG II has potent effects on ammonia production and secretion rates by the proximal tubule and is found in substantial concentrations in the lumen of the proximal tubule in vivo. Because our previous studies demonstrated that acid loading enhanced the stimulatory effects of ANG II on ammonia production and secretion by S2 proximal tubule segments, we examined the effect of ANG II on ammonia pro...
متن کاملEnhanced ammonia secretion by proximal tubules from mice receiving NH(4)Cl: role of angiotensin II.
Acidosis and angiotensin II (ANG II) stimulate ammonia production and transport by the proximal tubule. We examined the effect of short-term (18 h) in vivo acid loading with NH(4)Cl on ammonia production and secretion rates by mouse S2 proximal tubule segments microperfused in vitro with or without ANG II in the luminal microperfusion solution. S2 tubules from NH(4)Cl-treated mice displayed hig...
متن کاملTransport of ammonia in the rabbit cortical collecting tubule.
Nonionic diffusion and diffusion equilibrium of ammonia have been generally accepted as the mechanism of urinary ammonium excretion. However, these characteristics have not been examined directly in vitro. In the present studies, nonionic diffusion and diffusion equilibrium of ammonia were examined in rabbit cortical collecting tubules perfused in vitro. Collected fluid ammonium and pH were mea...
متن کاملEffect of luminal angiotensin II on rabbit proximal convoluted tubule bicarbonate absorption.
The present in vitro microperfusion study examined the effect of luminal angiotensin II on proximal convoluted tubule (PCT) volume absorption and bicarbonate transport. Neither 10-11 M, 10-10 M, nor 2 × 10-8 M luminal angiotensin II significantly affected PCT transport. When tubules were first perfused with enalaprilat to inhibit endogenous angiotensin II production, addition of 10-10 M luminal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 75 3 شماره
صفحات -
تاریخ انتشار 1985